WalkInSpace.ru - Бросая мяч (Часть 7)
Главная Новости Форум Поиск



Земля и космос

<<<Назад Страница 34 Далее>>>

Бросая мяч (Часть 7)

Давайте использовать массу Земли как единицу массы, радиус Земли как единицу расстояния, а единицу гравитационного ускорения как единицу ускорения. Земля будет составлять ровно 1 массы Земли, расстояние падающего тела от центра будет равно точно 1 радиуса Земли, а ускорение падающего тела будет равно точно 1 единице гравитационного ускорения. В этом случае:

G = 1 х 12/1 = 1 (уравнение 15).

Пока мы будем придерживаться этих единиц, мы можем убрать G и написать уравнение 13 следующим образом:

а = М/d2 (уравнение 16).

Если мы будем применять это уравнение только по отношению к Земле, то оно станет совершенно бесполезным. Единственное, что из него следует, — тело с размерами и массой Земли падает так, как мы видим его падающим. Не более того!

Но что будет, если мы переместимся к поверхности Луны? Масса Лупы в 0,0124 раза меньше массы Земли, то есть составляет 0,0124 земной массы. Расстояние от падающего на Луну объекта от центра Лупы равно радиусу Луны, который составляет 0,27 земного радиуса. Таким образом, мы находим из уравнения 16 (при том, что теперь М представляет массу Луны и d — расстояние до центра Луны):

а = 0,0124 / 0,272 = 0,17 (уравнение 17).

Мы видим, что падающее тело на поверхности Лупы движется вниз с ускорением в 0,17 (грубо говоря, 1/6 ) единицы ускорения. Для простоты примем, что на Луне тело ускоряется в 1,6 раза быстрее, чем на Земле, а это значит, что притяжение на Луне только в 1,6 раза меньше, чем на Земле.

Мы узнали это, не имея гравитационной постоянной. Но мы избавились от нее только потому, что использовали своеобразные единицы. Можно преобразовать единицы гравитационного ускорения в обычные, используя сантиметры и секунды. Для этого потребуется провести ряд измерений. Можно также преобразовать единицу радиуса Земли в обыкновенные единицы, используя сантиметры, прямыми измерениями. Но что нужно сделать с единицей массы Земли?

Эта проблема долгое время оставалась нерешенной, но тем не менее выход был найден. И если вы не возражаете, я завершу свою главу точно так же, как завершил предыдущую.

Местом, где это произошло, была Англия; временем, когда это произошло, был 1798 год; человеком, который это сделал, был Генри Кавендиш, а метод заключался в том, что... но немного потерпите.


<<<Назад Страница 34 Далее>>>



WalkInSpace.Ru

Правила:

«Путешествие в космос» © 2017

Использование материалов допускается при условии указания авторства WalkInSpace.ru и активной ссылки на www.WalkInSpace.ru.

Используются технологии uCoz


Яндекс.Метрика