WalkInSpace.ru - Мощь симметрии
Главная Новости Форум Поиск



Элегантная вселенная

<<<Назад Страница 116 Далее>>>

Мощь симметрии

Никто и никогда даже не пытался изучить свойства любой из пяти теорий струн при больших значениях констант связи, потому что не было и намека на то, как поступать вне рамок теории возмущений. Однако в конце 1980‑х — начале 1990‑х гг. физики начали делать первые, но твердые шаги к описанию конкретных свойств теорий (в частности, к вычислению отдельных масс и зарядов), проявляющихся в области физики сильной связи для данной теории, но все же находящихся в пределах наших вычислительных возможностей. Такие вычисления, с необходимостью выходившие за рамки теории возмущений, сыграли главную роль во второй революции суперструн и стали возможными во многом благодаря соображениям симметрии.

Принципы симметрии дают мощные средства для изучения многих свойств реального мира. Мы уже упоминали о том, что хорошо подтверждающаяся уверенность в том, что законы физики не выделяют никакое конкретное место во Вселенной и никакой конкретный момент времени, позволяет нам предположить, что законы «здесь и сейчас» будут теми же самыми, что и «там и тогда». Это всеобъемлющий пример; но принципы симметрии могут с тем же успехом применяться в более скромных случаях. Например, если свидетель ограбления разглядел лишь правую половину лица преступника, в полиции его информация все равно окажется ценной для составления фоторобота. Симметрия тому причиной. Хотя правая и левая половина лица отличаются, большинство лиц достаточно симметричны для того, чтобы отраженный образ одной половины лица можно было бы с успехом использовать в качестве приближения для другой половины.

В каждом из разнообразных применений роль симметрии состоит в возможности восстановления свойств по косвенным признакам, что часто гораздо проще прямого подхода. Для изучения законов физики в созвездии Андромеды можно было бы направить туда экспедицию, найти подходящую планету у одной из звезд, построить там ускорители и проводить эксперименты, аналогичные экспериментам на Земле. Но косвенный подход с использованием симметрии при сдвиге места действия куда проще. Можно было бы в деталях ознакомиться с чертами левой половины лица грабителя, изловив преступника и отправив его в участок. Но часто гораздо проще сначала воспользоваться лево‑правой симметрией человеческих лиц.

Суперсимметрия принадлежит к более абстрактным типам симметрии, который связывает физические свойства элементарных объектов с различными спинами. Эксперимент дает лишь косвенные намеки на то, что в микромире реализуется такой механизм симметрии, но по описанным выше причинам физики твердо убеждены, что он действительно реализуется. Естественно, этот механизм является неотъемлемой частью теории струн. В 1990‑е гг. после пионерской работы Натана Зайберга из Института перспективных исследований физики осознали, что суперсимметрия дает мощный инструмент, используя который можно косвенным методом ответить на ряд очень сложных и важных вопросов.

Одно то, что теория обладает суперсимметрией, позволяет даже без понимания всех тонкостей теории накладывать существенные ограничения на ее допустимые свойства. Приведем пример из лингвистики. Пусть известно, что в некоторой последовательности букв буква «у» встречается ровно три раза, и задача состоит в том, чтобы угадать эту последовательность. Не имея дополнительной информации, невозможно найти однозначное решение: подойдет любая последовательность с тремя буквами «у», например mvcfojziyxidqfqzyycdi и т. п. Но теперь допустим, что нам последовательно дают две подсказки: во‑первых, ответ должен быть существующим английским словом, и, во‑вторых, это слово должно содержать минимальное количество букв. Бесконечное количество первоначальных вариантов сокращается этими двумя подсказками сразу до одного кратчайшего английского слова с тремя «у»: syzygy (сизигия).

Суперсимметрия также дает подсказки, позволяющие конкретизировать ситуацию в теориях, которым свойственны такие принципы симметрии. Чтобы понять это, представьте, что вы столкнулись с физической задачей, аналогичной только что описанной задаче из лингвистики. Внутри черного ящика находится нечто неопознанное с определенным зарядом. Заряд может быть электрическим, магнитным, или иметь иную природу; для определенности примем, что этот заряд равен трем единицам электрического заряда. Без дополнительной информации определить содержимое ящика невозможно. В нем могут находиться три частицы с зарядом 1, подобные позитронам или протонам, или четыре частицы с зарядом 1 и одна частица с зарядом ‑1 (например, электрон), или девять частиц с зарядом 1/3 (например, и‑кварки) плюс любое число незаряженных частиц (например, фотонов) и т. д. Подходит любая комбинация частиц с суммарным зарядом 3. Как и в лингвистической задаче, где единственным условием было наличие трех букв «у», число возможных вариантов содержимого черного ящика бесконечно.

Но теперь, как и в примере из лингвистики, предположим, что нам даны еще две подсказки: во‑первых, теория, описывающая мир (а, следовательно, и содержимое черного ящика) является суперсимметричной, и, во‑вторых, содержимое черного ящика должно иметь минимальную массу. Пользуясь результатами работ Е. Богомольного, Маноджа Прасада и Чарльза Соммерфилда, физики показали, что такая жесткая структура формализма (формализм суперсимметрии — аналог английского языка) и «условие минимальности» (минимальность массы с данным электрическим зарядом — аналог минимальной длины слова с данным числом букв «у») приводят к тому, что скрытое содержимое определяется однозначно. То есть требование минимальности массы содержимого черного ящика при условии, что заряд внутри него будет равен заданному, позволяет однозначно определить это содержимое. Состояния с данным значением заряда, в которых суммарная масса частиц минимальна, называют Б ПС‑состояниями в честь трех открывших эти состояния ученых.

Важность БПС‑состояний состоит в том, что их свойства однозначно, легко и точно определяются без привлечения теории возмущений. Это справедливо вне зависимости от значения констант связи. Даже если константа связи струны велика, и, следовательно, подход с использованием теории возмущений неприменим, все равно можно вычислить точные параметры БПС‑состояний. Эти параметры часто называют непертурбативными массами и зарядами, так как их значения вычислены вне рамок приближенного подхода по теории возмущений. Поэтому для читателя, владеющего английским языком, BPS можно расшифровать и как beyondperturbative states — состояния вне рамок теории возмущений.

БПС‑свойства описывают лишь малую долю всех физических явлений в конкретной теории струн при больших константах связи, но эти состояния позволяют четко прояснить некоторые характеристики теории в области сильной связи. При выходе константы связи струны за рамки применимости теории возмущений, привязка к БПС‑состояниям позволяет расширить границы нашего понимания теории. Как и знание лишь нескольких выборочных слов в иностранном языке, эти состояния могут нам помочь продвинуться довольно далеко.


<<<Назад Страница 116 Далее>>>



WalkInSpace.Ru

Правила:

«Путешествие в космос» © 2017

Использование материалов допускается при условии указания авторства WalkInSpace.ru и активной ссылки на www.WalkInSpace.ru.

Используются технологии uCoz


Яндекс.Метрика