WalkInSpace.ru - От планковских времен до сотых долей секунды после Большого взрыва
Главная Новости Форум Поиск



Элегантная вселенная

<<<Назад Страница 139 Далее>>>

От планковских времен до сотых долей секунды после Большого взрыва

Вспомним из главы 7 (обратите особое внимание на рис. 7.1), что в раскаленной среде ранней Вселенной три негравитационных взаимодействия оказываются связанными воедино. Расчеты зависимости силы этих взаимодействий от энергии и температуры показывают, что до моментов примерно через 10‑35 с после Большого взрыва сильные, слабые и электромагнитные взаимодействия были одним «великим объединенным» взаимодействием. В этом состоянии Вселенная была гораздо более симметричной, чем сейчас. Подобно тому, как при плавке нескольких предметов из различных металлов получается однородная расплавленная смесь, при огромных температурах и энергиях ранней Вселенной все наблюдаемые различия между этими взаимодействиями пропадали. Но по мере того как Вселенная расширялась и охлаждалась, такая симметрия, как следует из формализма квантовой теории поля, разрушалась довольно резкими скачками и, в конце концов, привела к знакомой нам сравнительно асимметричной форме.

Нетрудно понять физический смысл этого понижения или нарушения симметрии, как его называют физики. Когда в резервуаре равномерно распределены молекулы Н2О, вода выглядит одинаково вне зависимости от того, под каким углом на нее смотреть. Рассмотрим, однако, что происходит при уменьшении температуры. Сначала все выглядит как обычно. На микроскопических масштабах уменьшается средняя скорость молекул воды — только и всего. Однако при понижении температуры до 0° С внезапно происходят радикальные перемены. Жидкая вода замерзает и превращается в лед. Как обсуждалось в предыдущей главе, это простой пример фазового перехода. Но сейчас для нас важно то, что при уменьшении температуры происходит уменьшение симметрии, которую проявляют молекулы Н2О. В то время как жидкая вода выглядит одинаково под любым углом наблюдения, демонстрируя симметрию относительно вращений, твердый лед выглядит совершенно иначе. Он обладает кристаллической структурой, т. е. если исследовать лед с должной точностью, он, как и любой кристалл, будет выглядеть по‑разному при наблюдении под разными углами. Фазовый переход приводит к явному уменьшению вращательной симметрии.

И хотя мы рассмотрели лишь один знакомый пример, это утверждение справедливо в более общем случае: при понижении температуры во многих физических системах происходит фазовый переход, который обычно сопровождается уменьшением или «нарушением» некоторых исходных симметрии системы. В действительности система может испытывать последовательность фазовых переходов при изменении температуры в достаточно широких пределах. Простейшим примером снова служит вода. При температурах выше 100° С она представляет собой газ (пар). В этом состоянии у системы даже больше симметрии, чем в жидком, так как в этом случае молекулы Н2О не связаны вместе в одну плотную жидкую упаковку, а предоставлены сами себе. Все они равноправны и носятся по всему резервуару, не образуя скоплений или групп, по которым молекулы можно было бы различать исходя из близости к соседям. При высоких температурах господствует полная демократия и симметрия. При понижении температуры за 100‑градусную отметку, естественно, начинают формироваться капли, и симметрия уменьшается. Дальнейшее понижение температуры не приводит к серьезным последствиям, пока не перейдена нулевая отметка, и в этот момент происходит фазовый переход из жидкости в лед, который также сопровождается резким уменьшением симметрии.

По мнению физиков, в моменты между планковским временем и сотыми долями секунды после Большого взрыва Вселенная вела себя аналогичным образом, испытав, по крайней мере, два подобных фазовых перехода. При температурах выше 1028 К все три негравитационные взаимодействия кажутся единым взаимодействием. Ситуация максимально симметрична. (В конце главы обсуждается как с помощью теории струн можно включить в этот высокотемпературный союз гравитационное взаимодействие.) Однако при понижении температуры ниже черты 1028 К во Вселенной происходит фазовый переход, при котором три силы природы выкристаллизовываются по‑разному в разные типы взаимодействий. Их относительные величины и детали того, как они воздействуют на материю, начинают различаться. Очевидная при высоких температурах симметрия этих взаимодействий разрушается при охлаждении Вселенной. Однако, как показали Вайнберг, Салам и Глэшоу (см. главу 5), пропадает не вся высокотемпературная симметрия: между слабыми и электромагнитными взаимодействиями сохраняется глубокая связь. По мере дальнейшего понижения температуры ничего необычного не происходит до отметки 1015 К (в 100 миллионов раз больше температуры Солнца), когда во Вселенной происходит еще один переход, разъединяющий электромагнитные и слабые взаимодействия. Они тоже обособляются, разрушая более симметричный союз, и различие между ними растет с понижением температуры Вселенной. Этими двумя фазовыми переходами определяется наличие трех разных типов негравитационного взаимодействия, хотя приведенный обзор истории Вселенной говорит об их близком родстве.


<<<Назад Страница 139 Далее>>>



WalkInSpace.Ru

Правила:

«Путешествие в космос» © 2017

Использование материалов допускается при условии указания авторства WalkInSpace.ru и активной ссылки на www.WalkInSpace.ru.

Используются технологии uCoz


Яндекс.Метрика