WalkInSpace.ru - Статьи - Основы жизни во вселенной - Варианты внеземной жизни. Часть 1
Главная Новости Форум Поиск



Варианты внеземной жизни. Часть 1

Возможна ли жизнь в других условиях, когда, например, нет воды, зато много аммиака или кремния? Можно рассматривать и другие варианты, например возможность жизни при низких температурах и т. п.

Напомним еще раз, что в основе жизни на Земле лежит углерод, он образует молекулярные цепочки. Вторым важным (необходимым) элементом жизни является вода. Она служит биологическим растворителем. Собственно, растворитель – это все. Он определяет весь химический характер жизни. Из растворителя – воды образуются и водород, и гидроксил, и кислород. Все они входят в состав живого вещества. Определяющей в данном случае является водородная связь. Она важна для структуры белков, нуклеиновых кислот и других органических соединений. Что же касается аммиака NH3 и ортофосфорной кислоты H3PO4, то они дают положительные ионы для образования связей при поликонденсации белков и нуклеиновых кислот. Эти связи создаются в реакции нейтрализации. При этом кислота и основание соединяются с образованием соли и воды. Напомним, что кислота и основание относятся к воде как к нейтральному веществу. Вода для них является родительским растворителем. Но только ли вода? Нет ли других веществ, которые выполняли бы такие же функции? Мы покажем, что такие вещества есть.

При усвоении органических соединений протекают процессы, которые по своей сути являются обратными процессу поликонденсации. Молекулы органических соединений распадаются в процессе гидролиза. При этом потерянная молекула воды вновь распределяется между остатками кислот и основания. Как мы уже видели, живые системы черпают энергию, которая высвобождается в реакциях окисления и брожения. Эти реакции относятся к воде подобным же образом. Поэтому вода с углекислым газом является конечным продуктом происходящего при реакции распада веществ. Нелишне напомнить, что при эволюции земной атмосферы она меняла свой состав от восстановительного до окислительного именно посредством воды. Ведь и углекислый газ, и свободный кислород являются продуктами различных преобразований воды, различных реакций. Можно даже сказать, что мы дышим кислородом, потому что мы пьем воду.

Не менее важны и металлы. Они являются катализаторами. Неметаллы также входят в живые организмы. Но они в основном заменимы (одни другими), кроме азота и фосфора.

Жизнь в активной форме возможна до тех пор, пока раствор (вода) остается в жидком состоянии. Это возможно в диапазоне температур от – 20 до +100 °C. Правда, высшая температура (температура кипения) зависит от давления. Чем ниже давление, тем меньше эта предельная температура. При высоких температурах большинство органических соединений разлагается. Но при низких температурах границы для существования скрытой жизни практически нет. Из всего сказанного следует очень важный вывод: диапазон температур, в котором возможна жизнь, зависит от химического состава. В нашем земном варианте жизни при высоких температурах разрушается химическая основа цепочек и колец, которая состоит из связанных друг с другом углеродных атомов. Но жизнь в других местах Вселенной не обязательно основана на углеродных соединениях. Поэтому и роль температуры там может быть иной. Известно, что образовывать цепочки может не только углерод. Это могут делать и другие элементы, особенно элементы IV группы. Они характеризуются тем, что у них на внешней оболочке имеется четыре электрона. Это значит, что там остаются еще четыре вакансии. Поэтому и создается валентность или, чаще, ковалентность, которая равна четырем. Напомним, что ковалентность – это такая связь, когда электроны внешней оболочки распределяются между обоими атомами. При такой симметрии сцепление атомов между собой очень прочное.

У углерода ковалентная связь легче всего устанавливается с атомами водорода или же с другим углеродным атомом. Связь углерода с углеродом (С – С) очень стабильна. Ее прочность не уступает прочности связи углерода с другими элементами. Поэтому углерод и может образовывать крупные молекулы полимеров большого молекулярного веса, которые стабильны в своей основе настолько, что их устойчивость соответствует требованиям живых систем. Одновременно они достаточно нестабильны в боковых ответвлениях для того, чтобы они могли быстро реагировать на изменения условий (физических и химических) в окружающей среде. Можно сказать, что с одной стороны они прочные, а с другой стороны высокочувствительные. Такие молекулы непрерывно обновляются. Поэтому их называют лабильными. По сути именно лабильность составляет химическую сущность жизни.

Энергия высвобождается следующим образом. Когда разрушаются метастабильные молекулы, у которых велика теплота образования, значительное количество энергии высвобождается легко. Наиболее типичной молекулой этого класса является глюкоза (С6Н12О6). В органических реакциях, проходящих на земле, растворителем является вода. Если растворителем является не вода, то вся химия будет другой. У органических систем, которые основаны на другом растворителе, основной элемент молекулярных цепей также другой (не углерод). Для рассматриваемой нами проблемы это крайне важно.

Для земной жизни растворителем является вода. Это нейтральное вещество, которое в равной мере является кислотой и основанием. Это возможно потому, что она сама по себе может производить диссоциацию (разрыв молекулы). Можно сказать, что вода образует ионный раствор в самой себе. Ионами являются Н+ (протон) и НО – (гидроксил). Первый ион характеризует воду как кислоту, а второй – как основание. Ион Н+ обычно присоединяется к молекуле воды. При этом образуется гидроксоний Н3О+. Затем он вступает в реакцию и высвобождает ион Н – . Все указанные атомы и группы находятся в воде в состоянии динамического равновесия.

Попробуем воду заменить жидким аммиаком. В принципе он ведет себя подобным же образом. Так, он диссоциирует (разрывается) на ионы Н+ и NH2 – . Затем ион Н+ соединяется с молекулой аммиака NH3 и образует аммоний NH4+.

Подобным образом ведут себя и другие растворители, которые сами способны создавать в себе ионы. Кислота – это вещество, которое путем прямой диссоциации или при взаимодействии с растворителем образует положительный ион, который характерен для данного растворителя. Для воды и аммиака это Н+. Основание – это вещество, которое дает аналогичным образом отрицательный ион. Для воды это НО, а для аммиака – NН2.

Когда кислота нейтрализуется основанием, положительный ион основания присоединяется к отрицательному иону кислоты (его называют остатком или радикалом), образуется соль. Одновременно отрицательный ион основания соединяется с положительным ионом кислоты. В результате образуется молекула растворителя. В том случае, когда электрический заряд иона является кратным, для его нейтрализации (уравновешивания) необходимо иметь столько же зарядов противоположного знака. Например, при реакции двуокиси углерода с аммиаком в воде образуется углекислый аммоний (NН4)СО3. Но для этой реакции присутствие воды обязательно. Без воды СО2 и NН3 не взаимодействуют (по терминологии химиков «не реагируют»).

В родительском растворителе частично диссоциирует и соль. Так, отдельные молекулы соли распадаются на ионы. В случае углекислого аммония такими ионами являются 2NH+4 и СО2 – 3. Это жидкость. Она обладает очень высокой электропроводностью, которая больше электропроводности чистого растворителя. Такая жидкость называется электролитом. Электролит должен (обязан) содержать в себе ионы. Если в жидкости нет ионов, она никогда не будет электролитом. В так называемом родительском растворителе ионные растворы дают кислоты, основания и соли, и только. Но в других растворителях ионные растворы могут вообще не давать ионов. Правда, они могут образовывать другие ионы.

Специалисты особо выделяют эффективные растворители из всех остальных. Эффективный растворитель должен растворять (эффективно!) большой ряд веществ. Для нас это вещества, которые могут создавать основу органических или псевдоорганических систем. Растворы данного типа должны быть ионными. Это может реализоваться или вследствие способности растворителя разрушать полярные ковалентные связи растворенного вещества (так действует вода, когда притягивает местные избыточные заряды в молекуле Н3РО4), или вследствие химического сродства ионов растворителя и растворенного вещества.

Для того чтобы молекула растворителя могла разрывать полярные ковалентные связи, она сама должна иметь сильный нескомпенсированный электрический заряд на своих «полюсах». При этом она должна оставаться в целом нейтральной. Другими словами, она должна обладать дипольным моментом. Для того чтобы эти связи оставались разорванными, необходимо, чтобы растворитель был хорошим изолятором. В противном случае разноименные заряды устремятся навстречу друг другу, и диполя не станет. Это свойство характеризуется диэлектрической постоянной («ди» означает два, то есть плюс и минус). Чем больше сила взаимодействия двух электрических зарядов, которые находятся в жидкости на определенном расстоянии, тем меньше диэлектрическая постоянная. Электролитический растворитель еще характеризуют вязкостью. Такой раствор должен обладать хорошей текучестью (малой вязкостью). В противном случае ионы не смогут достаточно свободно перемещаться. В результате все реакции будут протекать медленно.

Хороший электролитический растворитель может быть или выравнивающим, или дифференцирующим (то есть делящим). Если растворитель выравнивающий, то в нем разные растворенные вещества создают электролиты примерно одинаковой силы. У них степени ионной диссоциации сравнимы. Такими являются высоко полярные растворители с большим дипольным моментом вода и аммиак. В дифференцирующем растворителе сила электролита сильно меняется в зависимости от растворенного вещества. То есть растворитель реагирует дифференцированно на разные вещества, он их различает, разделяет. Примером таких растворителей являются некоторые амины и галоидозамещенные углеводороды, такие как метиламин СН3NН2 и хлороформ СНСl3.

Кроме этого хороший биологический растворитель должен обладать высокой удельной теплоемкостью, а также большой скрытой теплотой превращения. Что касается удельной теплоемкости, то она представляет собой количество тепла в калориях, которое необходимо для нагревания определенной массы (один грамм) данного вещества на один градус Цельсия. Если удельная теплоемкость вещества высокая, то оно будет нагреваться и охлаждаться медленно. Благодаря этому свойству находящийся в таком веществе организм предохраняется от негативного влияния быстрого изменения температуры. То же самое справедливо и в том случае, если это вещество находится внутри организма.

Скрытая теплота перехода из одного состояния (или фазы) в другое равна количеству тепла, которое поглощено или выделено телом, когда оно переходит из одной фазы в другую без изменения температуры. Так, скрытая теплота парообразования у воды равна 539 кал/г при температуре кипения. У аммиака эта теплота равна 341 кал/г. Это при давлении в одну атмосферу. Для живых организмов все указанные выше величины вполне подходят. Имеется и еще один растворитель – сероводород Н2S. Его скрытая теплота при давлении в одну атмосферу равна всего 132 кал/г. Этого, конечно, мало. Ситуацию может исправить только высокое давление.

Для того чтобы активная жизнь была возможна в широком диапазоне температур, надо, чтобы растворитель (жидкость) имел высокую скрытую теплоту перехода. Тогда этот растворитель не будет легко закипать и замерзать.

От изменений температуры эффективно защищают вещества с низкой теплопроводностью. Это хорошие изоляторы тепла. Но как меняется теплопроводность, так же меняется и диэлектрическая постоянная. Поэтому растворитель с высокой диэлектрической постоянной хорош для жизни по двум причинам: как хороший изолятор и как хороший термос.

Но перечисленных свойств растворителей для жизни мало. Надо еще, чтобы растворитель мог выполнять функции биологического растворителя, то есть он должен укладываться в определенную химическую схему. Он должен образовывать определенные ионы, которые могут с пользой для жизни войти в осуществимую в данных условиях схему органической химии. Что касается аммиака, то при умеренно низких температурах, когда вода уже превращается в лед, он очень напоминает воду по своему поведению. К тому же он является одним из нескольких десятков водоподобных растворителей. Эти растворители можно называть протонными, поскольку у них, как у воды и аммиака, образуется ион Н+ (протон). Такими растворителями являются гидразин N2Н4, гидроксиламин NН2ОН, синильная кислота HCN и фтористый водород HF. Примерами непротонных растворителей являются сернистый ангидрид SO2, четырехокись азота N2O4, двубромистая ртуть HgBr2.

Для того чтобы тот или иной растворитель стал основой жизни на планете, надо, во-первых, чтобы он вообще мог присутствовать на данной планете, а во-вторых, чтобы его количество было для этого достаточным. Так, двубромистая ртуть является очень хорошим растворителем для жизни, но очень маловероятно, чтобы она находилась на какой-либо планете в достаточном количестве. То, что характерные ионы этого растворителя не укладываются в известную нам химическую схему, ничего не значит. Почему же жизненные реакции не могут быть повторены с некоторыми изменениями в данном растворителе? Специалисты полагают, что водные группы Н и ОН могут быть замещены характерными ионами другого растворителя. Образовавшееся при этом соединение, растворенное или взвешенное в этом растворителе, должно вести себя по отношению к этому растворителю в химическом плане так же, как его незамещенный аналог по отношению к воде. Значит, это соединение по-прежнему будет способно выполнять в новой среде те же жизненные функции.

Что касается протонных растворителей, то в них различны только отрицательные ионы (анионы). В аммиаке это NH2 – , а в сероводороде HS – . Сероводород при низких температурах является водоподобным растворителем. Указанные два замещения часто встречаются в органической химии.

Биологических растворителей много. Но большинство из них находится в жидком состоянии при температурах, когда вода либо замерзает, либо целиком обращается в пар. Конечно, в таких условиях земная жизнь невозможна. Но у аммиака точка замерзания равна – 77,7 °C. Когда вся вода превратится в лед, аммиак может образовывать океаны. Так же и растворители с высокой точкой кипения могут заменять воду при температурах, когда вода может существовать только в состоянии пара. Она находится в атмосферном газе или вообще убегает в космическое пространство, если находится очень высоко. Это происходит тем легче, чем меньше масса планеты, то есть чем меньше сила гравитационного притяжения. Отметим, что диссоциация воды (разрыв молекулы на атомы) происходит в результате действия коротковолнового ультрафиолетового излучения Солнца.

Если на планете высокая температура, то условия для жизни на ней будут плохими, потому что при высоких температурах происходит разрыв углеродных связей. Собственно, любая химическая реакция с увеличением температуры ускоряется. Причем очень сильно. На каждые 10 °C скорость химических реакций увеличивается в 2-3 раза. Если же температура увеличится от 0 до 100 °C, то скорость реакций увеличится не менее чем в 1000 раз. Ясно, что при этом лабильные органические молекулы разрушаются или же вступают во взрывную реакцию. Это может происходить очень эффектно. Например, на той стороне Меркурия, которая обращена к Солнцу, можно было бы взорвать мост при помощи глюкозы. Справедливо и обратное. Многие применяемые у нас взрывчатки в условиях очень низких температур являются простыми органическими соединениями. Поэтому в интересах безопасности большие заряды взрывчатки (например, тысячекилограммовые бомбы) лучше держать при низких температурах. Так и поступали во время Второй мировой войны.

Атомный вес также играет важную роль. Если он увеличивается, то химическая активность элемента (вещества) уменьшается. Это и понятно. Чем тяжелее частица, тем она ленивее в смысле химической активности. Большие тела движутся медленно, зато при этом происходит компенсация роста температуры. Поэтому более тяжелые атомы с той же валентностью ведут себя при высоких температурах почти так же, как и легкие атомы (их аналоги) при низких температурах. Отсюда следует важный для проблемы жизни вывод: одни атомы, более легкие, могут быть заменены другими, более тяжелыми. Более тяжелые атомы смогут справиться с высокими температурами. Так, углерод С может быть замещен более тяжелым кремнием Si. У них одинаковые свойства, поскольку они находятся в IV группе таблицы Менделеева. В V группе азот N может быть заменен фосфором Р. В VI группе кислород О может быть заменен более тяжелой серой S. Значит, если в земных условиях в жизненных процессах участвуют более легкие указанные элементы, то в более высокотемпературных условиях их могут заменить указанные более тяжелые элементы. Так жизнь может справиться с высокой температурой в неземных условиях. Более того, даже в земных условиях сера иногда замещает в органических соединениях кислород. Подобным образом в обычных органических структурах встречается кремний.

Что касается кремния, то этот элемент образует цепочки, как и углерод. Поэтому специалисты серьезно обсуждают идею высокотемпературной жизни, которая могла бы быть основана на кремнии. Главное, что требуется от заменителей углеродной химии, это то, чтобы они содержали большие, обязательно лабильные молекулы, которые способны выполнять структурные и функциональные обязанности наших органических молекул, но в иных планетных условиях. Конечно, их структура может быть весьма различной.

Рассмотрим подробнее возможности жизни при низких температурах. Если температура не очень низкая, то для этих условий имеются несколько подходящих растворителей, которые могут заменить воду. Каждому из этих растворителей можно подобрать систему аналогов органических соединений. Одним из таких растворителей, как уже говорилось, является сероводород H2S. Его температура замерзания равна – 85,6 °C, кипит он при атмосферном давлении при температуре – 60,75 °C. Скрытая теплота испарения у него низкая. При низких атмосферных давлениях все эти показатели не очень благоприятны для жизни. Но для планет с большой массой, которые имеют мощные атмосферы, а значит, и большую гравитационную силу притяжения, этот вариант с сероводородом ученые не исключают. Примером такой планеты является Юпитер. Имеются и другие планеты-гиганты.

Рассмотрим подробнее свойства сероводорода. Он остается в жидком состоянии и тогда, когда даже аммиак (а не только вода) замерзает. Сероводород является серным аналогом воды. Правда, диэлектрическая постоянная сероводорода сравнительно низка. Она равна всего 10,2 против 81,1 для воды и 22,0 для аммиака. Тем не менее у него есть много свойств, которые говорят о том, что он может быть основой жизни в качестве растворителя. Сероводород является протонным растворителем, то есть содержит ионы Н+. Этот растворитель, как и вода, сам себя диссоциирует, то есть производит разрыв своих молекул на ионы. Таким же свойством обладает и аммиак. У сероводорода диссоциация протекает по реакции:2Н2S ^ H3S+ + HS – .

В результате этой реакции в качестве характерного иона появляется Н+. Из сероводород образуется и отрицательный ион. Им является НS – . Это хорошо известная меркаптогруп-па. Поэтому нам достаточно заменить гидроксил НS – во всех органических соединениях. Мало того, такие замещения реальны, поскольку они наблюдаются и в земных условиях. Интересно, что соединение С4Н12S13 было найдено в метеоритах.

Свойства сероводорода таковы, то в нем растворяется ряд кислот, а также галоидных соединений, арил – и алкил-замещенных сульфидов аммония, а также многие органические вещества. Опытным путем было установлено, что целый ряд химических индикаторов меняет окраску при переходе из кислот в основную относительно Н2S среду. Другими словами, изменение окраски происходит в присутствии кислот и оснований, которые соответствуют этому растворителю и которые растворяются в нем. Ясно, что те химические соединения, которые при диссоциации в растворе дают ион Н+ (протон), в жидком сероводороде должны вести себя как кислоты. Значит, те водные кислоты, которые в нем растворяются, сохраняют кислотный характер. Одна из таких кислот – это НCl. Соединения, которые дают отрицательные ионы HS – или S2 –, в системе H2S будут основаниями. Основание вступает в реакцию с кислотой, и образуются соль и растворитель.

Если мы имеем дело с аммиаком, то там протекает реакция, аналогичная гидролизу в воде. Она называется сольволизом. Это реакция, обратная нейтрализации. Соединения реагируют с растворителем, и при этом обычно образуется по одной молекуле основания и кислоты. Любопытно, что одно и то же соединение может вести себя и как кислота, и как основание. Примером этого могут служить спирты. Они в водном растворе ведут себя как кислоты по отношению к органическим кислотам, которым в этом случае приписываются основные свойства. Ряд веществ также ведет себя подобным образом в жидком сероводороде.

При низких температурах жидкого сероводорода некоторые соединения, которые содержат углеродные цепочки, могут стать устойчивыми настолько, чтобы быть лабильными. В других условиях все происходит по-иному. Например, наиболее широко распространенный на Земле азот, который при наших обычных температурах образует только короткие нестабильные цепочки, при низких температурах, характерных для жидкого сероводорода, может образовывать достаточно прочные связи. Эти связи могут в определенной степени заменить углерод-углеродные связи.


WalkInSpace.Ru

Правила:

«Путешествие в космос» © 2024

Использование материалов допускается при условии указания авторства WalkInSpace.ru и активной ссылки на www.WalkInSpace.ru.

Используются технологии uCoz


Яндекс.Метрика